
Chapter 5.6: Substitution and Area Between
Curves
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Substitution Method for Definite Integrals by Example∫ 1

0

t3(1 + t4)3 dt =

[
1

16
(1 + t4)4

]1
0

=
1

16
· 16− 1

16
=

15

16

We compute

∫
t3(1 + t4)3 dt =

∫
1

4
u3 du =

1

16
u4 + C =

1

16
(1 + t4)4 + C

Substitution u = 1 + t4 and du = 4t3 dt.

∫ 1

0

t3(1 + t4)3 dt =

∫ 4

1

1

4
u3 du =

[
1

16
u4
]2
1

=
1

16
· 16− 1

16
· 1 =

15

16

Use substitution u = 1 + t4 and du = 4t3 dt.
But we also try to modify the bounds of integration.
If t = 0, then u = 1 + 04 = 1 and if t = 1, then u = 1 + 14 = 2.
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Substitution Method for Definite Integrals by Formula

Dealing with definite integrals

I Compute the antiderivative separately and plug it back with the original
variables.

I Update bounds as you go.
If substitution u = g(x) and du = g ′(x) dx , use∫ b

a

f (g(x))g ′(x) dx =

∫ g(b)

g(a)

f (u) du

Example:

∫ 1

−2
(2x + 1)e(x

2+x)3 dx

=

∫ 2

2

eu
3

du = 0

Use substitution u = x2 + x and du = (2x + 1) dx .
Bound from −2 is (−2)2 − 2 = 2 and from 1 is 12 + 1 = 2.

The antiderivative of (2x + 1)e(x
2+x)3 is really bad.
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∫ b

a

f (g(x))g ′(x) dx =

∫ g(b)

g(a)

f (u) du

∫ 1

−1
3x2
√

x3 + 1 dx =

∫ 13+1

(−1)3+1

√
u du =

∫ 2

0

u
1
2 du =

[
2

3
u

3
2

]2
0

=
2

3
2

3
2 − 0 =

4 ·
√

2

3

Use substitution u = x3 + 1, which gives du = 3x2 dx .

∫ π/4

0

tan(x) sec2(x) dx =

∫ 1

0

u du =

[
1

2
u2
]1
0

=
1

2

Use substitution u = tan(x), which gives du = sec2(x) dx .
Also note tan(0) = 0 and tan(π/4) = 1.

∫ √3

0

4z√
z2 + 1

dz =

∫ 4

1

2√
u
du =

[
4
√
u
]4
1

= 4
√

4− 4
√

1 = 4

Use substitution u = z2 + 1, which gives du = 2z dz .
Also note 02 + 1 = 1 and (

√
3)2 + 1 = 4.
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Area between two curves

If f (x) ≥ g(x) on [a, b], then the area of the region between the curves on [a, b] is∫ b

a

[f (x)− g(x)] dx .

−3 −2 −1 0 1 2 3 4

0
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10

x

y

Notice since f (x)− g(x) ≥ 0, area is positive.
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Example; area =
∫ b

a [f (x)− g(x)] dx

Find the area bounded by y = x + 6 and y = x2.

If the bounds a and b are not given, we need to find them.

−3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

x

y

x + 6

x2

Solving for a and b:

x + 6 = x2

x2 − x − 6 = 0

(x + 2)(x − 3) = 0

Hence we are computing the area from
−2 to 3 of x + 6− x2.∫ 3

−2
x+6−x2 dx =

[
1

2
x2 + 6x − 1

3
x3
]3
−2

=
1

2
9+18−27−

(
2− 12 +

1

3
8

)
=

125

6
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More examples

Find the area of the region enclosed by y = 2− x2 and y = −x .

First, we find the points of intersection:

2− x2 = −x
0 = x2 − x − 2

0 = (x − 2)(x + 1)

and so the curve meet at x = −1, 2. Note that at x = 0, we have

2 = 2− (0)2 and 0 = −(0)

and so 2− x2 is the “bigger” function. Therefore, the area is∫ 2

−1
(2− x2)− (−x) dx =

∫ 2

−1
2 + x − x2 dx = . . . =

9

2
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More examples

Find the area of the region bounded by y =
√
x and y = x2.

Again, we get the points of intersection:

√
x = x2

x = x4

0 = x4 − x

0 = x(x3 − 1)

and so x = 0 and x = 1. In between, we see that

1/4 = (1/2)2 and 1/
√

2 =
√

1/2

and thus
√
x is the “bigger” function. Therefore, the area is∫ 1

0

√
x − x2 dx =

[
2

3
x3/2 − 1

3
x3
]1
x=0

=
1

3
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Bonus∫ π
2

0

(cos x)sin x

cos(x)sin x + sin(x)cos x
dx
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